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a b s t r a c t

We present an algorithm for the layered segmentation of video data in multiple views. The approach is
based on computing the parameters of a layered representation of the scene in which each layer is mod-
elled by its motion, appearance and occupancy, where occupancy describes, probabilistically, the layer’s
spatial extent and not simply its segmentation in a particular view. The problem is formulated as the MAP
estimation of all layer parameters conditioned on those at the previous time step; i.e., a sequential esti-
mation problem that is equivalent to tracking multiple objects in a given number views. Expectation–
Maximisation is used to establish layer posterior probabilities for both occupancy and visibility, which
are represented distinctly. Evidence from areas in each view which are described poorly under the model
is used to propose new layers automatically. Since these potential new layers often occur at the fringes of
images, the algorithm is able to segment and track these in a single view until such time as a suitable
candidate match is discovered in the other views. The algorithm is shown to be very effective at segment-
ing and tracking non-rigid objects and can cope with extreme occlusion. We demonstrate an application
of this representation to dynamic novel view synthesis.

Crown Copyright � 2009 Published by Elsevier B.V. All rights reserved.
1. Introduction

The layered representation has become a popular means of rep-
resenting and describing natural scenes in a compact way. The idea
is that a video sequence may be represented by a small number of
textured regions and their associated motions [1].

Layers have mainly found use in the representation of monocu-
lar video sequences, typically for applications concerned with
video coding [2]. In previous work [3] we described a layered rep-
resentation suitable for multiple view descriptions of dynamic
scenes in which occlusions occur. Our aim was to extract all rele-
vant parameters from the layered model including segmentation,
appearance, motion and correspondence information. The result-
ing representation has applications in, for example, video coding,
but we were (and remain) motivated by the problem of novel view
synthesis for dynamic scenes in which knowledge of occlusion
boundaries can dramatically improve the speed and quality of
novel rendered views.

In the current paper we reformulate the mathematical expres-
sion of the problem to deal not only with the binocular case, but
also with the monocular case, obtaining in the process an algo-
rithm that is potentially n-view (though our results to date only
show a maximum of two views). We also make the important
extension to our previous work that new layers are automatically
009 Published by Elsevier B.V. All
proposed when the current generative model fails adequately to
explain the current images.

Our algorithm is based fundamentally on the observation that
in order to deal with occlusion, it is necessary to represent occu-
pancy – i.e., the spatial extent of each layer. Further, in order to
estimate occupancy, visibility must be considered – i.e., the visible
subset of occupancy in a particular view. The representation of
both visibility and occupancy and the consideration of multiple
views are the key features of our work, and distinguish it from
the plethora of work that has gone before, much of which models
only visibility, and most of which considers only a single
viewpoint.

1.1. Related work

The most common forms of layered model encountered in the
literature are designed for the single view case. Early approaches
were mostly bottom-up. Wang and Adelson [1] robustly compute
affine motion parameters over an arbitrary grid of patches and pro-
ceed to cluster motion and re-evaluate both the number and extent
of the layers. Subsequent approaches by Darrell and Pentland [4]
and by Ayer and Sawhney [5] employ a probabilistic mixture mod-
el formulation to compute the maximum likelihood layer parame-
ters by simultaneously computing segmentation and motion. In [6]
model selection is also introduced, to determine the number of lay-
ers automatically.

A particular variant among previous approaches is whether or
not occlusion is fully accounted for. The persistent representation
rights reserved.
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of a layer’s occupancy in spite of occlusion is key for tracking and is
exploited by Jepson et al. [7], where a strong shape model is em-
ployed. Tao et al. [8] model a layer’s shape by a Gaussian spatial
prior but this serves more as a segmentation (i.e., visibility) prior
rather than an occupancy prior and thus does not explicitly con-
sider occlusion.

Like us, Frey and Jojic [9] model occlusion through a layered
generative model. Their method is designed to determine layers
in a set of images in which there is no assumed temporal ordering.
The placement of a layer in an image is modelled as a distribution
over all possible locations, quantised to the resolution of the image
grid. Although their approach is quite general, there are two rea-
sons we do not pursue a similar approach here: (i) in many appli-
cations there are strong temporal constraints available from
ordered image sequences, and the use of these constraints pro-
duces a more efficient algorithm; (ii) Frey and Jojic demonstrated
only translational changes in layers. For this case, the number of
possible poses is manageable (i.e., number of image positions),
but this grows exponentially with the number of degrees of free-
dom of the transformation. So while their framework is not
restricted to translation only, there is a practical difficulty in com-
puting the distribution over, say, all six affine degrees of freedom.
In contrast by making a (fairly weak) assumption of temporal con-
tinuity, we can afford to represent alignments and their associated
uncertainties analytically.

Zhou and Tao [10] describe an approach to modelling the back-
ground which may occlude foreground layers. This work is similar
to ours in formulation but does not consider multiple views and in
some respects may be regarded as a special case. In particular, their
solution is via a method of axial iteration in which some parame-
ters are held fixed while others are optimised. The solution method
is therefore inefficient and will not reach a local optimum in the
single pass used. Here however, we derive the exact EM algorithm
for the generative model and obtain a much more efficient solution
without needing to discretise the space.

A common goal in monocular dynamic segmentation methods
such as those above is to be able to remove unwanted foreground
objects, or indeed to replace the background, in a process known
as compositing commonly achieved by blue screening in television
and film production. The corresponding work in computer vision
has concentrated on segmentation of the image into two layers,
foreground and background, but with an emphasis on extracting a
high quality alpha matte, a map indicating the proportion of fore-
ground present at each pixel in a scene [11–15]. Such an alpha
matte can then be used for re-compositing, or creating novel views
(though not necessarily physically plausible). Matting for multiple
layers, automatically extracted, has recently been described in [16].

While the approaches above compute motion layers for a single
view of a dynamic scene, less commonly layers are extracted from
a binocular pair of views, in order to represent the static structure
of the scene as a set of planar ‘‘layers”. Examples of this include
[17,18]. In these papers the transformation associated with a layer
maps its location between spatially separated views, rather than its
dynamic position. In contrast, our work considers both motion and
structure.

Various work has recognised the virtues of combining segmen-
tation with multiview structure estimation. Goldlucke [19] com-
bines 3D structure estimation with background separation, and
likewise Kolmogorov [20] combines binocular stereo with bi-layer
(i.e., foreground/background) segmentation. These papers share a
number of similarities with our work, but differ in that they are
more tightly locked in to a multiview framework (e.g., in the for-
mer, a point is either background, or must have a disparity; there
is no concept of a layer existing in only one view). While these
efforts concentrated on the small baseline problem, more recently
some authors have tackled the wide baseline problem in a
combined segmentation and reconstruction framework [21,22].
Segmentation of foreground and background yields a set of silhou-
ettes from disparate view which can be combined to yield the so-
called visual hull, and which can subsequently be used to produce
novel views by re-rendering the 3D reconstruction.

1.2. Roadmap

The remainder of the paper is structured as follows: we begin in
Section 2 with a description of our generative layered model and
then in Section 3 suggest a means of solving for the maximum a pos-
teriori layer parameters via generalised Expectation–Maximisation.
Section 4 discusses the algorithm that results and implementation
details. In Section 5 we show segmentation results for one-view
and two-view scenes, and show examples of novel view interpola-
tion created using this segmentation. We conclude in Section 6.

2. Layered model

In this section we describe the layered representation and con-
sider a generative model; it is then shown how this suggests a
solution via the EM-algorithm.

2.1. Parameters

Assume the layered model consists of nþ 1 depth ordered lay-
ers: the background layer and n foreground layers. Note that the
ordering of layers is determined indirectly (via disparity) by their
inter-viewpoint spatial alignment parameters. Each layer can be
defined by its occupancy, appearance and alignment parameters.
The first two properties correspond to the underlying object’s
shape and colour (the intrinsic parameters), whereas the align-
ment parameters relate the coordinate frame of the layer to each
view (the extrinsic parameters); Fig. 1 illustrates the meaning of
the layer parameters. The layered model at time t is denoted as
Lt ¼ ðL0

t ; L
1
t ; . . . ; Ln

t Þ, where

Li
t ¼ Oi

t;A
i
t ;U

i
t

� �
ð1Þ

are the parameters (occupancy, appearance, alignments) of the ith
layer. Each layer has m alignments (one for each view):

Ui
t ¼ /ij

t

n o
; j 2 ½1; . . . ;m� ð2Þ

If a layer is not within the field of view of a particular camera, the
alignment parameters project the layer outside the image. Of course
in this case there is no data to constrain the alignment directly – it
will be indirectly constrained by observations in other images –
analogous to if it were completely occluded.

2.2. Model

Conceptually, an image is composed of a number of indepen-
dent layers which, in general, may overlap and therefore occlude
each other. The result is that the value of an image pixel is gener-
ated by the foremost layer at that point. The composition of layers
involves two variables: which layer is the foremost and occupies a
particular point (visibility), and what value does that layer gener-
ate at that point (appearance).

More formally, the generative model for an observed image in the
jth view Ij

t is such that the intensity at pixel x is generated according
to the realisation of a random variable described by the appearance
model of the foremost layer at the point x. If we assume the existence
of an indicator variable that states which layer is foremost (a visibil-
ity indicator), and further, we consider it to be a random variable we
obtain a mixture model formulation. This is described by



Fig. 2. A Bayesian network illustrates the problem of tracking the layered
representation Lt given the observations (current images) It and takes the form of
a hidden Markov model.

Fig. 1. The parameters that describe a layer are occupancy Oi
t (represented by a probabilistic map), appearance Ai

t (represented by an intensity map), and alignment /ij
t (a

transformation relating the coordinate frame of the ith layer to the jth image). In the case shown there are two images, and so two alignments mapping from layer coordinates
to image coordinates.
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P Ij
tðxÞ

� �
¼
Xn

i¼0

P Ij
tðxÞjV

j
tðxÞ ¼ i

� �
P Vj

tðxÞ ¼ i
� �

ð3Þ

in which the probability of the pixel value Ij
tðxÞ given that the ith

layer is visible constitutes the ith layer’s appearance model. Here,
the observed intensity is assumed to be distributed normally condi-
tioned on the visibility and has mean given by the aligned appear-
ance map:

P Ij
tðxÞjV

j
tðxÞ ¼ i

� �
� N Ai

t /ij
t

�1
x

� �
;r2

I

� �
ð4Þ

Interpret the visibility P Vj
tðxÞ ¼ i

� �
as the probability that the ith

layer is visible in the jth view at x. Then the visibility probability
of the ith layer can be expressed in terms of the occupancy param-
eters of all layers

P Vj
tðxÞ ¼ i

� �
¼ Oi

t /ij
t

�1
x

� � Yn

k¼iþ1

1� Ok
t /kj

t

�1
x

� �h i
ð5Þ

that is, the probability that a particular layer is visible at x is given
by the probability that it occupies x and that no closer layer occu-
pies x.

The solution to mixture model problems typically involves
attempting to invert the generative model given the generated
data. If we know which layer is visible at each pixel, then our prob-
lem is partitioned into nþ 1 simpler sub-problems which can be
solved using ML or MAP parameter estimation for example. The
problem is that we do not know the visibilities; they are hidden.

The EM-algorithm is a method which solves the hidden data
problem by assuming an initial estimate for the parameters. We
can produce initial estimates for the parameters from those ob-
tained at the previous time step.
3. Estimating the layer parameters

The general layer model is illustrated by the network shown in
Fig. 2, where Lt represents the set of all layer parameters at time t
and It represents the set of all images at time t. The joint probabil-
ity of all nodes in Fig. 2 can be factored as
PðL0Þ
Yt

s¼1

PðIsjLsÞPðLsjLs�1Þ: ð6Þ

Rather than attempting to solve for the entire network, we adopt a
recursive maximum a posteriori estimation approach, solving at
time t for the current parameters, given the previous values by max-
imising PðIt jLtÞPðLtjLt�1Þ. Taking logs we obtain the equivalent max-
imisation of FðLtÞ,

FðLtÞ ¼ ln PðIt jLtÞ þ ln PðLtjLt�1Þ ð7Þ
3.1. EM algorithm

The Expectation–Maximisation algorithm [23] is applied in this
section to solve a hidden data problem. Starting from the original
cost function FðLtÞ, we introduce the hidden visibility variables V
and a distribution QðVÞ over these variables to give

FðLtÞ ¼ ln PðIt jLtÞ þ ln PðLtjLt�1Þ ð8Þ
¼ ln

X
V

PðV ; It jLtÞ þ ln PðLt jLt�1Þ ð9Þ

¼ ln
X

V

QðVÞ PðV ; It jLtÞ
QðVÞ þ ln PðLt jLt�1Þ ð10Þ

P
X

V

QðVÞðln PðV ; It jLtÞ � ln QðVÞÞ þ ln PðLt jLt�1Þ ð11Þ

where the bound arises directly from Jensen’s inequality. Letting
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f ðQ ; LtÞ ¼
X

V

QðVÞ ln PðV ; ItjLtÞ � ln QðVÞð Þ þ ln PðLt jLt�1Þ ð12Þ

be the lower bound, it can be shown that equality between F and f
holds when QðVÞ ¼ PðV jIt; LtÞ, i.e., when the QðVÞ is the posterior
visibility distribution. Therefore, by assuming initial estimates for
the parameters we can compute QðVÞ (the E-step). Next, we can
maximise the lower bound f ðQ ; LtÞ given QðVÞ (the M-step). In sum-
mary, using k to represent the iteration number, we iterate the fol-
lowing steps until convergence:

E-step:

Q ðkÞðVÞ ¼ PðV jIt ; L
ðk�1Þ
t Þ ð13Þ

M-step:

LðkÞt ¼ arg max
Lt

X
V

Q ðkÞðVÞ ln PðV ; ItjLtÞ þ ln PðLt jLt�1Þ ð14Þ

Despite appearances, solving Eqs. (13) and (14) is much easier than
solving Eq. (7) because the parameters of each layer can be solved
for separately, as detailed below.

In the following the conditional dependence on the current
layer parameters Lt is implicit. We assume that, conditioned on
the hidden visibility variables and layer parameters, pixel intensi-
ties are independent. In the case that a layer keeps the same
appearance but changes pose, the assumption is effectively that
the per-pixel noise is independent. This is a common, expedient
and justifiable assumption. A weakness, however, is that we do
not model correlated changes, such as overall changes in lighting.
The model can capture these at the level of individual pixels (by
treating such changes as noise), but this is naturally a weaker rep-
resentation of the phenomenon.

The E-step then involves computing the posterior visibility dis-
tribution over the layer index i for each pixel x of each view j de-
noted by qijðxÞ and given by

qijðxÞ ¼ P Vj
tðxÞ ¼ ijIj

tðxÞ
� �

ð15Þ

/ P Ij
tðxÞjV

j
tðxÞ ¼ i

� �
P Vj

tðxÞ ¼ i
� �

ð16Þ

where the prior visibility is given by Eq. (5).
The M-step involves maximising the function f ðq; LtÞ:

f ðq; LtÞ ¼
Xn

i¼0

Xm

j¼1

X
x

qijðxÞ ln P Ij
tðxÞjV

j
tðxÞ ¼ i

� �

þ qijðxÞ ln P Vj
tðxÞ

� �
þ ln P Li

tjL
i
t�1

� �
ð17Þ

The final form of the cost function becomes the following, where
here, the variable x is a position relative to the coordinate frame
of the ith layer:

Xn

i¼0

Xm

j¼1

X
x

qij /ij
t x

� �
ln P Ij

tð/
ij
t xÞjVj

tð/
ij
t xÞ ¼ i

� �

þ qij /ij
t x

� �
ln Oi

tðxÞ þ
Xi�1

k¼0

qkjð/ij
t xÞ

 !
lnð1� Oi

tðxÞÞ

þ ln P Ui
t jU

i
t�1

� �
þ ln P Oi

t jO
i
t�1

� �
þ ln P Ai

t jA
i
t�1

� �
ð18Þ

It can be seen that the M-step may be performed by independently
optimising each layer’s parameters. Further, within each layer occu-
pancy and appearance may be optimised independently of each
other. However, the alignment parameters cannot be optimised
independently of the occupancy and appearance parameters. It is
therefore necessary to perform an E-step between solving for the
alignments and solving for the other parameters. This approach is
a version of generalised EM and is also guaranteed to converge.
3.2. Computing alignment

In order to compute the alignment parameters we consider the
cost function when all other parameters are fixed. Consider the ith
layer’s alignment with the jth view, the expression to maximise is:

f q;/ij
t

� �
¼
X

x

�qij /ij
t x

� � Ai
tðxÞ � Ij

tð/
ij
t xÞ

� �2

2r2
I

þ qij /ij
t x

� �
ln Oi

tðxÞ

þ
Xi�1

k¼0

qkj /ij
t x

� � !
ln 1� Oi

tðxÞ
� �

þ ln P /ij
t j/

ij
t�1

� �
ð19Þ

In words, the optimum alignment for the ith layer with the jth im-
age is found when (1) the appearance map agrees with the image
data wherever the ith layer is visible (first term), (2) the occupancy
map is large wherever the ith layer is visible (second term), (3) the
occupancy map of the ith layer is small wherever any farther layers
are visible (third term), and (4) the alignment agrees with the prior
motion constraint (fourth term).

The solution is found by using a modified version of the proba-
bilistic image alignment solution proposed in [24], the difference
here being the addition of the extra term in the cost function (sec-
ond term) and the weighting introduced by the posterior visibility.
The result is a iterated linear solution for the alignment
parameters.

3.3. Computing occupancy

Now, taking the alignment parameters to be fixed we consider
the occupancy parameters of the ith layer and the associated cost

f q;Oi
tðxÞ

� �
¼
Xm

j¼1

qij /ij
t x

� �
ln Oi

tðxÞ þ
Xi�1

k¼0

qkj /ij
t x

� � !
ln 1� Oi

tðxÞ
� �

þ ln P Oi
tjO

i
t�1

� �
ð20Þ

We model the prior occupancy as a beta distribution

P Oi
tðxÞ

���Oi
t�1ðxÞ

� �
/ Oi

t

a
1� Oi

t

� �b
ð21Þ

where a ¼ Oi
t�1 and b ¼ 1� a. This is for two reasons: occupancy is

limited to values between zero and one, and the other terms in the
cost are in the form of the logarithm of a beta distribution.

Thus we obtain a linear solution for occupancy.

Oi
t ¼

aþ a
1þ aþ b

; a ¼
Xm

j¼1

qij /ij
t x

� �
; b ¼

Xm

j¼1

Xi�1

k¼0

qij /ij
t x

� �
ð22Þ

This solution makes sense since large values of visibility or prior
occupancy (numerator) tend to increase the occupancy and large
values of farther layer’s visibilities (denominator) tend to reduce
the occupancy.

3.4. Computing appearance

The appearance is computed by optimising the cost

f q;Ai
tðxÞ

� �
¼
Xm

j¼1

�qij /ij
t x

� � Ai
tðxÞ � Ij

tð/
ij
t xÞ

� �2

2r2
I

�
Ai

tðxÞ � Ai
t�1ðxÞ

� �2

2r2
A

ð23Þ

where we have assumed a constant appearance transition model
and a prior on appearance given by the normal distribution
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P Ai
tðxÞ

���Ai
t�1ðxÞ

� �
� N Ai

t�1ðxÞ;r2
A

� �
ð24Þ

with mean given by the previous appearance and variance r2
A. The

variance offers a control on how much we expect a layer’s appear-
ance to vary over time (useful in the case of non-rigid motion). Both
parameters, rI and rA were set empirically in our experiments, but
could potentially be learned.

We obtain a linear solution for the appearance

Ai
tðxÞ ¼

1
r2

I

Pm
j¼1qij /ij

t x
� �

Ij
t /ij

t x
� �

þ 1
r2

A
Ai

t�1ðxÞ
1
r2

I

Pm
j¼1qij /ij

t x
� �

þ 1
r2

A

ð25Þ

Thus, the appearance is updated during the M-step by a weighted
blend of the prior appearance and the current images; the blending
Fig. 4. Single view example: a synthetic sequenc

Fig. 5. Single view example: (top) segmentation showing large occlusion and non-rigid m
the single view tracking example. Note the complete crossing of the individuals in th
appearance images 5th and 6th from the left, which persist in spite of the near total oc

Compu
Alignm
(M−Ste

Propose
new/old
layers

Propagate
priors

Fig. 3. The steps shown are performed as one cycle per frame. However, the Expectatio
usually sufficient for convergence.
weights change each iteration and depend on the visibilities and
alignments.
4. Algorithm and implementation

At each time t the layer parameters are propagated from those
computed at the previous time according to the mode of the pos-
terior distributions. This procedure acts much like a prediction
and serves as the starting point of the EM algorithm. The next stage
is to reconsider the order of the model, i.e., does the model explain
the data well and if not should there be additional layers. We take
quite a simple approach to this which involves considering how
well the model explains the data compared to a model which as-
sumes a uniform data likelihood. More precisely, for each pixel in
e showing large occlusion and rigid motion.

otion; (bottom) occupancy and appearance maps of the two foreground layers from
e third frame at the top, which corresponds approximately to the occupancy and
clusion.

Compute
Appearances

(M−Step)

Compute
Occupancies

(M−Step)

Compute
Visibilities
(E−Step)

te
ents
p)

n and Maximisation steps may be iterated; we found that two or three iterations is
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each view we compute the evidence for the layered model from the
following:

P LtjIj
tðxÞ

� �
¼
Xn

i¼0

P Ij
tðxÞjV

j
tðxÞ ¼ i

� �
P Vj

tðxÞ ¼ i
� �

PðLtÞ ð26Þ

and the evidence from an alternative and uninformative model M

P MjIj
tðxÞ

� �
¼ P Ij

tðxÞjM
� �

PðMÞ ð27Þ

We set the prior for the layered model as 0.99 and the prior for the

alternative as 0.01. By flagging pixels where P Lt jIj
tðxÞ

� �
6 P MjIj

tðxÞ
� �

we obtain a mask for each image of which pixels are poorly
Fig. 6. Two view example: the left-hand column shows extracts from one sequence, whi
Note: (i) automatic creation of new layers from a single layer (top pair) to multiple laye
third row); (iii) correct treatment of occlusion (e.g., cyan box, second row).
explained under the current model. By looking for locally dense
clusters of unexplained pixels of a given minimum size a new layer
is initialised by setting the occupancy to 0.8 inside the region ini-
tialised and taking the current image pixel values in that region
as the appearance.

For layers that appear in two or more views the depth-ordering
is easily obtained from the disparity; a new layer that exists only in
one view is given a nominal depth value that is refined over time.
Any layers which move outside the range of all views are deleted
and new layers instantiated before solving for the new parameters.
Fig. 3 illustrates the full algorithm.

The algorithm begins with only one layer, the background. We
assume that a good model of this has been learnt offline. In practice
le the right-hand column shows the same time instants from a different viewpoint.
rs; (ii) new layers being created as players enter one field of view (e.g., yellow box,
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we achieve this by observation over an extended period, taking the
most median value per pixel, relying on the assumption that the
background is visible more frequently than any other objects.
While not always true, it is reasonable in our main application
area, and in any case a more sophisticated process could easily
be incorporated. The background model is not updated over time.

At each new frame, Eqs. (26) and (27) are used to propose new
single-view layers. Each single-view layer (either new or pre-exist-
ing) is then checked against the other views to determine if there is
a correspondence between single-view layers in more than one
view. If so, the two are merged to form a multiview layer, other-
wise they persist as single view layers with undefined alignment
for the other views.

In our implementation the alignment for the background is al-
ways the identity transformation (static cameras) but the frame-
work is not restricted in this respect. To cope with pan-tilt-zoom
parameters we could change /0 to be a four or five degree of free-
dom 2D homography. The alignment of all foreground layers is
modelled using six degree of freedom affinities. The appearance
model in our implementation is restricted to monochrome rather
than full colour information.
5. Results

In this section we show results from applying the algorithm to
various video data. Results are shown for tracking in one and two
views. In the figures the boundaries drawn over the images indi-
cate where a layer’s occupancy passes through the value 0.5 and
serve to show the layer’s computed extent.

In the first experiment the occlusion handling claim is tested using
synthetic data in which two textured squares pass over each other on
a textured background (Fig. 4). Although this example exhibits a large
amount of occlusion, occupancy is accurately maintained and
tracking continues after the occlusion. Often, in trackers which do
not handle occlusion, this situation would not allow the exposure of
the previously occluded object to be predicted by the model.
Fig. 7. Creating novel views: each row shows novel views that interpolate between the tw
same sequence.

Fig. 8. Two background images at the real viewpoints, extracted a
Fig. 5 shows a sequence taken from a single viewpoint in
which two people are wandering around and one passes in front
of the other causing near total occlusion. Note the non-rigid mo-
tion of the arms and legs relative to the torso. The results show
this is handled well. In addition the figure shows the progression
of the occupancy and appearance maps of the two foreground
layers.

To demonstrate the algorithm in a more demanding scenario, it
has been applied to two views of a football game in which new
players are entering the scene in both views as time goes by
(Fig. 6). Although there are more parameters to solve for in two
views than in one, there is better scope for direct layer measure-
ment because even if part of a layer is occluded in one view it
may be visible in another. The result is that the appearance and
occupancy can be estimated even though an object may be hidden
in some views.

Our original motivation for developing a motion segmentation
and tracking algorithm was for novel view synthesis. The knowl-
edge of occluding boundaries, and the temporal propagation of
these, can lead to more efficient and better quality novel views. Gi-
ven a precomputed layered segmentation and the corresponding
occupancy and visibility indicator variables, we can easily generate
new views in real time, using visibility as an alpha matte, by vary-
ing the layer alignment parameters in a manner consistent with
the novel viewpoint’s epipolar geometry. The background in each
view is pre-learned from the sequence by extracting the median
colour; this expedient method works well under the assumptions
that the camera is static, and that foreground objects move so that
every background pixel is unoccluded for more time than it is oc-
cluded. Interpolated and extrapolated background layers are then
generated using the method of [25]. Examples for the football se-
quence are shown in Fig. 7.

Another football sequence, captured with different cameras, is
used to construct a sequence from a viewpoint midway between
the cameras. The two background images for the cameras are
shown in Fig. 8, and Fig. 9 shows a sequence of 32 frames rendered
from the novel viewpoint.
o cameras. (top) Frame 40 from a 100 frame sequence; (bottom) frame 70 from the

utomatically from the sequences containing moving players.
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6. Conclusion

We have presented a novel layered representation for multiple
views of dynamic scenes, in which the single view problem is a
special case. A MAP solution for sequentially estimating the param-
eters of the model was described with the facility of automatically
initialising new layers. The result is a procedure which can track
multiple moving objects over a number of views with a complete
representation of the salient properties. In particular, the model
maintains a persistent representation of occupancy in spite of
Fig. 9. A movie strip (left-to-right, top-to-bottom) showing a scene generated from a no
top row. Background rendering artifacts caused by the algorithm of [25] can be seen pa
layered segmentation creep in towards the end of the sequence: e.g., note the players ar
edges to the players.
occlusions and integrates measurements from each view according
to visibility.

In principle the approach does not require a particular align-
ment parameterisation but in our implementation we assume af-
fine alignment. Thus it admits planar like objects or relatively
short baselines between views. One weakness of our current
implementation is the restriction that the background is modelled
as a single ‘‘special” layer, behind all others. In many scenes, there
is in principle no reason why the background could not be
modelled as a set of planar layers itself together with individual
vel viewpoint mid-way between the two cameras. Note how the layers grow in the
rticularly at the top-left of the goal, while rendering errors caused by errors in the
ound the goal-keeper where the occupancy is incorrect causing ghosting and fuzzy
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alignment parameters; this would then admit the possibility of
parts of the background (e.g., the goal posts) occluding the
foreground.
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